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Abstract

Discrete-time, linear quadratic methods were used to design feedback controllers for re-

ducing tones generated by flow over a cavity. The dynamics of a synthetic jet actuator

mounted at the leading edge of the cavity as observed by two microphones in the cavity

were modeled over a broad frequency range using state space models computed from exper-

imental data. Variations in closed loop performance as a function of model order, control

order, control bandwidth, and state estimator design were studied using a cavity in the

Probe Calibration Tunnel at NASA Langley. The controller succesfully reduced the levels of

multiple cavity tones at the tested flow speeds of Mach 0.275, 0.35, and 0.45. In some cases,

the closed loop results were limited by excitation of sidebands of the cavity tones, or the

creation of new tones at frequencies away from the cavity tones. Nonetheless, the results val-

idate the combination of optimal control and experimentally-generated state space models,

and suggest this approach may be useful for other flow control problems. The models were

not able to account for non-linear dynamics, such as interactions between tones at different

frequencies.
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Nomenclature
A state transition matrix

B input matrix

C output matrix

D feedthrough matrix

J performance function

K feedback gain vector

I identity matrix

Q output weighting matrix

r effort weighting

u actuator input

v disturbance input

w sensor noise vector

x state vector

y output vector

α Rossiter phase-lag term

κ phase speed of instability wave

()c cavity system

()f frequency system

()k value at kth sampling instant

Introduction

The generation of tones by flow over a rectangular cavity is a well known aeroacoustic

phenomenon that affects landing gear and weapons bays on aircraft. Key elements of this

phenomenon include instability wave growth and convection in the cavity shear layer, un-

steady shear-layer impingement on the downstream cavity corner, upstream propagation of

sound from the trailing-edge noise source, and conversion of sound to instability waves at

the cavity’s leading edge through a receptivity process. The sound pressure levels of the

resulting tones can be very high, creating a noise problem inside the aircraft and possibly

destroying delicate instrumentation in the cavity.

While the reduction of high sound pressure levels is important, the cavity tone problem

is also a useful testbed for active flow control studies. Active flow control is of interest in

application areas such as drag reduction, lift enhancement, and maneuverability for advanced

vehicles1,2 A narrow cavity in a wind tunnel is a low-dimensional testbed which retains

important attributes of more complex flow problems such as limited actuator authority,

nonlinearities, and a lack of physics-based models that can be used for control design. The

goal of the work discussed here is to investigate and develop feedback control methodologies
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for the cavity problem that will be useful for other flow-control problems.

The literature on the cavity tone problem is understandably focused on reducing the

levels of the tones, rather than on using the cavity as a testbed for flow control. Nonetheless,

past studies provide important insights into the physics of cavity tone generation and control,

and more recent work describes sophisticated control approaches that could be applied to

other flow control problems. Previous control approaches for the cavity tones can be broadly

classified as being based on either passive, open loop active, or closed loop active methods.

Passive approaches include rods and spoilers mounted on the leading edge of the cavity.3

These methods can be effective for a limited range of flow conditions, but they don’t provide

extensive insight into the dynamics of the cavity that could be used for feedback control

design.

Open loop active methods do not involve a closed feedback loop, but still provide useful

information on actuators and sensors. These methods generally involve steady or unsteady

blowing at the cavity’s leading edge. For example, unsteady blowing can be used to drive

the shear layer at a frequency different from the cavity resonance frequencies,4–6 and thereby

reduce shear layer amplification of energy at the resonance frequencies. This is a clever use

of the non-linear behavior of the shear layer, but the approach offers limited information

on the linear dynamics of the cavity. Alternatively, mass can be injected just upstream of

the cavity’s leading edge7 in order to thicken the boundary layer and reduce the growth of

instabilities in the shear layer. The optimum mass flow rate depends on the flow speed, but

as with the unsteady blowing, the approach provides limited insight into the dynamics of

the cavity tone problem over a large bandwidth.

Closed loop active methods which treat the cavity as a dynamical system are of particular

interest for feedback flow control. Much of the early work on closed loop control of cavity

tones involved manual tuning of the gain and delay of simple feedback loops at frequencies of

the cavity tones.8–13 The general approach in these previous studies was to feed the bandpass-

filtered response of a microphone inside the cavity to an actuator, such as a synthetic jet or

bending flap, at the leading edge of the cavity. A tunable gain and delay on the feedback

signal were adjusted for maximum tone reduction. Reductions of 10-20 dB in the sound

pressure level of a single tone were demonstrated, with modest additional reductions at

multiple tones. These closed loop active methods were found to require an order of magnitude

less energy than open loop active methods for reducing cavity tones.9

A desire to eliminate manual tuning of the gain and delay of the feedback loops led to

the application of adaptive disturbance rejection algorithms based on low order models of

an actuator and sensor system in a cavity. For example, Cattafesta applied an adaptive

disturbance rejection algorithm to a subsonic compressible cavity flow,14 where the dynam-
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ics of the actuator to sensor response near a cavity tone were modeled as a second order

system. The controller used an ARMARKOV adaptive disturbance rejection algorithm,15

and achieved reductions of 10 dB on a single tone, although an actuator failure may have

hindered performance. Another approach to automatically tune control parameters for a

separated shear flow problem is described by King.16 In that work, robust control methods

were used to optimize the excitation frequency and amplitude for synthetic-jet actuators,

positioned at the edge of a backward facing step, to manipulate the reattachment length

behind the step. The dynamics of the actuator to sensor path were modeled using first or

second order models plus a time delay. Robust control methods were used to create feedback

controllers that compromised robust stability, disturbance rejection, and control energy.16

More complicated dynamical models of the cavity have also been used to generate feed-

back controllers for cavity tones. A linear quadratic regulator was used to control a single

mode resonance at low Mach numbers (<0.15).17 This approach is attractive because it pro-

vides a rigorous framework for controller design. Physics-based models of the tone generation

mechanism in a cavity have also been proposed for control design purposes.10,13 The model

consists of a series of transfer functions, where time delays due to downstream propagation

in the shear layer and acoustic propagation upstream in the cavity are important features

of the model. While such a model is useful for physical insight, no such model is currently

available with the accuracy needed to design and implement a feedback controller.

In contrast to earlier feedback control approaches, the current work treats control of

cavity tones as a broadband feedback control problem, where the bandwidth of interest

spans more than one thousand Hertz and contains multiple cavity tones. A synthetic jet

was positioned at the leading edge of the cavity as a control actuator, and two dynamic

pressure transducers located in the cavity were used as error sensors. A high-order state

space model, generated from experimental data, was used to capture the important dynamics

of the actuator-sensor system over the bandwidth of interest at a given flow speed. Discrete-

time, linear quadratic control design methods, augmented with frequency shaping,18 were

used to design feedback controllers. These methods were chosen because they are well

understood and can be based directly on experimentally identified models of the system

being controlled. While the resulting models and controller are not explicitly derived from

physics-based insights, the goal of this work was to study the suitability of experimentally

based control design in flow-control applications. In addition, the approach can be readily

extended to a predictive control method which integrates model identification and control

design,19 leading to a fully adaptive controller.

Feedback control tests were conducted on a cavity located in the Probe Calibration

Tunnel at NASA Langley Research Center. Tests were conducted at flow speeds of Mach

4 of 21



Figure 1: Schematic of cavity

0.275, 0.35, and 0.45. Over 260 control designs were tested, involving variations in model

order, controller order, controller bandwidth, and estimator design.

The paper begins with a description of the system identification and control design meth-

ods. The Experimental Setup section contains descriptions of the tunnel, cavity, and control

transducers. The Results section describes analysis of the test data, including the cavity

response with no control, and transfer function models of the control system. Example

closed loop results at each flow speed are discussed and compared with models of the closed

loop transfer function. The paper ends with results which illustrate the limitations of linear

models for this problem.

Analysis

The control design methodology was based on linear quadratic control methods. The

approach required identification of a state space model from experimental data, design of a

state estimator, and computation of the feedback gains. This section of the paper begins

with a brief description of the experimental testbed, since several design choices were driven

by characteristics of the testbed.

The feedback control system was used on a simple rectangular cavity with an actuator

on its leading edge and pressure sensors inside the cavity. A schematic of the cavity is

shown in Fig. 1. In the diagram, flow goes from upper left to lower right over the cavity.

A synthetic-jet actuator was located at the cavity’s leading edge, oriented so the jet’s exit

flow introduced disturbances parallel to the free stream direction. This design was based on

the results of Williams et al.,8,12 suggesting this orientation to be optimal. Pressure sensors

were located in the wall below the cavity’s trailing edge and in the floor of the cavity near

the leading edge, as indicated in the figure.

The dynamics of the cavity were assumed to be linear and time-invariant (LTI). A block

diagram of the control system applied to the cavity is shown in Fig. 2. With the LTI

assumption, the cavity is represented by a transfer function relating pressure sensor responses

to synthetic jet input. As shown in the diagram, an external disturbance was assumed to
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Figure 2: Block diagram of control system

enter the cavity coincident with the synthetic jet actuator, so the control designs were posed

as disturbance rejection from the actuator. This assumption is not entirely accurate, but it

was used because the true disturbance input is difficult to model and could not be determined

from the current experimental data. The assumption provides for an appropriate general

trend because active control will add damping and reduce peak responses, but precludes a

direct comparison of predicted and experimental results.

A state space model was assumed for the dynamics from the actuator input to the sensor

responses. This model is written

xc
k+1 = Acxc

k + Bc(uk + vk)

yc
k = Ccxc

k + wk

(1)

where no direct feedthrough of the inputs has been assumed.

The matrices Ac,Bc,Cc,Dc were computed from experimentally measured input-output

data using the eigensystem realization algorithm (ERA).20,21 The ERA algorithm is a “black-

box” identification method, so-named because the only free parameter in the model is the

number of degrees of freedom. The model does not include any physics-based dynamics with

tunable parameters, for example, hence the identified states are difficult to correlate with the

application physics. Nonetheless, this identification approach has been useful on high order

plants with complex dynamics, where a model based on first principles cannot adequately

capture important aspects of the problem.22

In this application, the order of the state space model was chosen so the frequency

responses of the identified model reproduced the spectral responses of the sensors as seen

from the control actuator. High model orders, ranging from 150 to 200 states, were generally

needed to obtain a model that accurately reproduced the dynamics near the cavity tones.

Once the model was identified, a balanced realization truncation method [18, Ch. 10] was

6 of 21



used to reduce the model size to 60 states before the controller was designed. This smaller

model size was needed for enabling a real-time control implementation. A further reduction

in the model size would be desirable so the model parameters could be more easily related

to the underlying physics of the cavity. However, minimizing the model size was not a goal

of the present work.

The input-output data used to identify the model were collected by driving the synthetic

jet with a broadband signal and recording the corresponding sensor responses. This proce-

dure was done with flow present over the cavity, since the cavity dynamics are determined

by the flow. The identified model was assumed to be accurate only at the single flow speed

where the input-output data were collected.

To reduce control spillover and actuator saturation due to out-of-bandwidth control en-

ergy, a frequency-dependent penalty was applied to the control signal. The synthetic jet

actuator had authority in a limited bandwidth containing three or four of the cavity tones,

making it difficult to obtain an accurate system identification at all frequencies. To compen-

sate for the limited actuator authority, a frequency-dependent penalty was inserted in the

feedback loop to restrict control energy to the frequency range containing the cavity tones.

The approach was based on augmenting the plant model in Eq. 1 with filter dynamics,

Af ,Bf ,Cf ,Df to create an additional plant output.18 This additional dynamical system is

labeled in the block diagram in Fig 2 as the frequency shaping system. The frequency shap-

ing was accomplished using a bandstop filter, where the magnitude of the filter corresponded

to the amount of control effort penalty. Hence, the stopband contained the most significant

three or four cavity tones in order to not penalize control effort in that frequency range. The

passband of the filter, at frequencies above and below the cavity tones, penalized control

effort in these areas. The upper and lower corner frequencies as well as the passband gain

were all control design parameters. Combining the cavity and frequency shaping systems

yields the single state space system[
xc

xf

]
k+1

=

[
Ac 0

0 Af

] [
xc

xf

]
k

+

[
Bc

Bf

]
uk +

[
Bc

0

]
vk (2)

with output vector [
yc

yf

]
k

=

[
Cc 0

0 Cf

] [
xc

xf

]
k

+

[
0

Df

]
uk +

[
wk

0

]

yk = Cxk + Duk +

[
wk

0

] (3)
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The controllers were designed to minimize the quadratic performance function

J =
∞∑

k=1

yT
k Qyk + ru2

k

=
∞∑

k=1

xT
k CTQCxk + (DTQD + r)u2

k

(4)

where the non-negative definite matrix Q defines the performance of the system, and r is a

positive scalar that sets a frequency-independent control effort penalty. Note that including

the response of the frequency shaping system as a plant output enables the effort penalty

to be applied without introducing a phase delay, as would occur with inline filtering of the

actuator signal.

The optimal control corresponding to Eq. 4 is implemented as

uk = −Kxk (5)

A solution for the optimal controller, given the augmented plant model (Eqs. 2 and 3), Q,

and r, is well known18 and is implemented in many engineering software packages.

A discrete Kalman estimator was used to estimate the cavity model states, xc
k (the

states of the effort weighting system, xf
k , could be predicted without error from the actuator

signal). The process noise (vk in Eq. 2) and measurement noise were both assumed to be

Gaussian and independent. As shown in Eq. 2, the process noise was assumed to enter the

plant through the same path as the control actuator. The ratio of variances of the process

and measurement noises is usually unknown and is another design parameter in the control

law. This ratio and the shaping of the frequency-dependent control effort weighting have a

significant effect on the bandwidth of the controller.

These parameters are compared graphically in Fig. 3. The solid line in Fig. 3(a) shows

the magnitude of the frequency response between the synthetic jet actuator and a pressure

sensor in the cavity at low Mach number. The dashed line in the plot is the magnitude of a

bandstop filter used to penalize control effort. At low and high frequencies the control effort

term is greater than the performance curve, hence the control effort term dominates the

cost function. The corresponding optimum controller will have low gain in these frequency

ranges. Within the stopband of the effort penalty, the sensor response curve dominates, so

the controller will have high gain in this area. The floor of the stopband filter is determined

by the parameter r in Eq. 4.

For the Kalman estimator, Fig. 3(b) illustrates the relationship between measurement

and process noise. Process noise is assumed to enter the plant coincident with the actuator,
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a) Performance vs. Control Ef-
fort

b) Process vs. Measurement
Noise

Figure 3: Graphical comparison of control design parameters

hence the figure shows the same transfer function as in Fig. 3(a). Here, the dashed line

represents the ratio of the variances of measurement noise to process noise. Only near peaks

at 700, 1200, and 1500 Hz is the sensor response assumed to be due to the plant model. The

Kalman estimator corresponding to this example would be of low gain where measurement

noise dominates the sensor response. As a result, the state estimates in these frequency

ranges would tend to zero, which has the effect of rolling off the gain of the controller.

Using the notation from Fig. 2, where G(z) denotes the discrete time transfer function

from actuator input to sensor responses, and H(z) denotes the transfer function of the

feedback controller, the transfer function of closed loop system can be written

Y (z)

U(z)
=

G(z)

1 + G(z)H(z)
(6)

This equation provides one way to check the stability and performance of the closed loop

system. It will also provide some insight into the closed loop performance, but this is of

limited utility without complete knowledge of the disturbance spectrum and disturbance

path. Errors in the state space model of the plant will also limit the usefulness of Eq. 6 for

predicting the actual performance of the controller.

The sensitivity of the closed loop control system is also a useful analysis tool, since it

quantifies how sensor noise is amplified or attenuated by the feedback control system.18 The

sensitivity, written as a transfer function of sensor response, Y (z), for a given random noise

input, N(z), to the sensor is given by

Y (z)

N(z)
=

1

1 + G(z)H(z)
(7)

When disturbance rejection is the primary concern, as for the cavity problem, the sensitivity

should be small in frequency ranges where the disturbance is to be minimized.
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Experimental Setup

The wind tunnel facility, cavity model, and transducers used to implement feedback

control are described in this section.

Wind Tunnel Facility

The experiments were conducted in the NASA Langley Probe Calibration Tunnel (PCT).

The PCT is typically operated as an open-jet pressure tunnel with independent control

of stagnation pressure, stagnation temperature, and free stream velocity. The stagnation

pressure and temperature ranges for the facility are 13.8 kPa to 1034 kPa and 255 K to

367 K, respectively. For the current experiments, the facility was fitted with a subsonic

nozzle that contracts from a circular inlet to a 50.8 mm by 152.4 mm exit. A straight duct

section of length 0.6 m was attached to the nozzle exit and was terminated with a small-angle

diffuser. The free stream Mach number range for the present tunnel configuration was 0.04

to 0.8.

Cavity Model

A rectangular cavity model was installed in the ceiling of the straight duct section of

the PCT. The floor of the duct section was a foam filled baffle which minimized reflections

of acoustic waves radiated by the cavity. The cavity model had a fixed length, ` = 152.4

mm, and a variable depth, d which was fixed to 30.48 mm, for an `/d ratio of 5. The cavity

model spanned the width of the test section (w = 50.8 mm) to provide an un-obscured view

of the cavity shear layer for optical diagnostics. A schematic of the cavity (drawn inverted

from its installed position for clarity) is shown in Fig. 1, with actuator and sensor locations

indicated.

Sensors

The cavity model was instrumented with a pair of piezoresistive pressure transducers

(Endevco model 8510B-2). The sensors had a nominal sensitivity and bandwidth of 2.2×10−5

V/Pa and 14 kHz, respectively. One sensor was located in the floor midplane, 18 mm

downstream from the cavity front wall. The second sensor was located in the midplane of

the rear cavity wall, 19 mm from the cavity trailing edge. The signals from the sensors were

pre-amplified and low-pass filtered with 6th order elliptic filters with a corner frequency of

3 kHz. Because these filters are present during system identification, their effect is implicitly

accounted for in the plant model.

Different gains were applied to the front and rear sensor responses so the voltages going

to the analog to digital converters used as much of the working range of the converters as

possible. The system identification model and feedback control system were implemented
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in terms of volts of sensor response and volts of actuator input. This means that the two

sensors appeared nearly as energetic as one another to the control system, even though in

terms of calibrated units the frequency response at the rear sensor was nearly 10 dB higher

across the bandwidth than at the front sensor. This result has implications for the sensor

weighting matrix, Q, in the control performance function. Specifically, if Q = qI, where q is

a scalar, the controller penalizes both sensor responses equally.

Actuator

It is important to minimize or eliminate disturbances which are fed into the shear layer

at the cavity leading edge by acoustic feedback. The point at which actuation is applied is

critical; actuation at the cavity leading edge, where the shear layer is most sensitive, should

minimize the required control effort. Recent attempts at cavity control have adopted this

approach for actuation.8,12,14

A piezo-driven synthetic jet was chosen as the actuator for the current study. The exit

of the synthetic jet actuator was a rectangular slot, 44.5 mm long by 0.5 mm high, located

just below the cavity leading edge.

Benchtop measurements of the actuator output velocity in a quiescent medium revealed

the peak velocity at the slot exit was ≥ 15 m/sec over a frequency range of 600 to 1500 Hz.

However, the slot exit boundary conditions undoubtedly change when placed in the cavity

environment, which is expected to cause the magnitude of the exit velocity to change. No

attempt was made to characterize the output velocity of the actuator while operating in the

cavity environment with flow. The control signal sent to the actuator was not filtered since

the actuator’s response naturally rolled off above 3 kHz.

Control Hardware

The feedback controllers were implemented on a floating point digital signal processor

(DSP). The DSP was also used to collect input-output data for system identification. This

ensured an accurate measurement of all gains and delays in the control path. The sample

rate for all control designs discussed here was 7500 Hz.

Results and Discussion

Closed loop performance data was collected over a four day period for over 260 control

designs. Variations in model order (the size of the identified state space model of the cavity

dynamics), control order (the model order after internal balancing and state reduction),

control bandwidth, and sensor noise variance in the state estimator were tested. The results

presented here were selected to validate the combined experimental system identification and

optimal control design procedure.
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Figure 4: Response of rear pressure transducer at three flow speeds.

In all cases, the cavity was modeled as a single input, two output system, where the input

corresponded to the synthetic jet actuator and the outputs to the two pressure sensors in the

cavity. All control designs considered both sensors to be equally important in the control

cost function. With this assumption, Q = qI in Eq. 4, where q is a scalar. Likewise, the

sensor noise, wk in Eq. 1, was assumed to consist of two independent, white noise signals

with equal variance. A fourth order Chebyshev filter was used to implement the bandpass

filter for the frequency dependent effort penalty.

This section begins by showing the response of the rear pressure transducer at the three

flow speeds of interest. Next, models of the identified transfer function from synthetic jet

input to sensor response are described. This is followed by examples of closed loop results

at each flow speed. The section ends with a discussion of results from Mach 0.35 which

illustrate the complexity of the cavity tone problem.

Open Loop Response

Autospectra of the rear pressure transducer response at flow speeds of Mach 0.275, 0.35,

and 0.45, are shown in Fig. 4. The autospectra were computed from 5.3 sec of data with a

frequency spacing of 3.7 Hz. A Hanning window was applied to the data to reduce leakage.

The curves show increasing broadband sound levels with increasing flow speed, and the

presence of at least two significant tones at each flow speed. The basic flow physics of these

tones were first described by Rossiter,23 hence the tones are commonly referred to as the

Rossiter modes or Rossiter tones of the cavity.
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The frequencies of the tones in Fig. 4 agree closely with frequencies predicted by a mod-

ified Rossiter equation.24 The dominant tones in the figure at each flow speed correspond to

the second and third Rossiter modes. Table 1 compares measured and predicted frequencies

for these tones, using the modified Rossiter equation,24 where κ was assumed to be 0.66

times the freestream velocity, and α was assumed to be 0.25. These values were empirically

determined from experimental data, and are close to values reported in the literature.24

Table 1: Measured vs. predicted frequencies (Hz) of the 2nd and 3rd Rossiter
modes

Mach Mode 2 Mode 3
# Meas. Pred. Meas. Pred.

0.275 609 604 965 950
0.35 704 737 1160 1159
0.45 903 898 1343 1411

Open Loop Transfer Function

The control methodology assumed that an accurate state space model of the transfer

function from actuator input to sensor outputs was available. This model was computed

from measured input-output data obtained when the actuator was driven with a random

signal with a bandwidth of 100-3700 Hz. Due to significant broadband pressure fluctuations

from the impinging shear layer and limited actuator authority, the coherence from driving

signal to sensor response was low. At all three flow speeds the coherence was less than

0.05 below 500 Hz and above 3 kHz, where the synthetic jet had little control authority. In

between those frequencies, the coherence went down with flow speed: < 0.5 at Mach 0.275,

< 0.4 at Mach 0.35, and < 0.2 at Mach 0.45. To compensate for the low coherence, long

time records (10 seconds) were collected for system identification.

Frequency responses of state space models of actuator input to sensor responses at three

flow speeds are shown in Fig. 5. Figure 5(a) shows the magnitude of the frequency response

at the pressure sensor in the rear of the cavity, and Fig. 5(b) shows the front sensor. The

frequency responses are in terms of volts of sensor response per volt of actuator input, which

corresponds to the units used by the control system. In calibrated units, the frequency

response to the front sensor was about 10 dB lower than the rear sensor at all frequencies.

Because of the very low coherence between actuator input and sensor response, the models

should be considered accurate only between about 500 Hz and 1800 Hz. The frequency

dependent control effort penalty discussed earlier was used to limit control energy to this

middle frequency range. The number of states in each model, listed in the figure legend, was

selected so the model’s frequency response matched the measured frequency response in this
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a) Rear pressure transducer b) Front pressure transducer

Figure 5: Modeled frequency response magnitudes at three flow speeds

middle frequency range.

The curves in Fig. 5 offer some insight into the synthetic jet’s capabilities as a broadband

actuator. At Mach 0.35 and 0.45, the transfer function has high gain near the Rossiter

modes, but drops off by 20 dB or more away from the modes. In contrast, at Mach 0.275,

peaks near the Rossiter modes are not as distinct, and the transfer function has many small

peaks from 600 to 1300 Hz. In particular, the transfer function at Mach 0.275 peaks at

800 Hz, a frequency which is between Rossiter modes at 609 and 965 Hz. A peak at 800 Hz

is visible to some degree at all three flow speeds, and is probably due to a resonance of the

piezoelectric actuator in the synthetic jet. At all three flow speeds the transfer function gain

rolls off at high and low frequencies.

Identified state space models of the actuator to sensor dynamics appeared to remain

accurate over a few hours of testing at a given flow speed. For a given flow condition, a

state space model was computed from input-output data and then used to generate a suite

of different control designs. These control designs might include variations of sensor noise

variance, control bandwidth, and control order. The control designs were then individually

tested with the tunnel at the same flow condition. In some cases, a few hours elapsed between

the collection of system identification data and the evaluation of a control design. However,

the results did not indicate that closed loop performance depended on the elapsed time since

system identification was collected. This suggests that both the tunnel conditions and the

dynamics of the tone generation mechanism did not change significantly over a few hour

period.

Closed Loop Results

Results obtained using the best control designs at the three flow speeds are presented in

this section. The results are quantified by comparing open and closed loop autospectra of

the rear sensor response. For these cases, similar reductions were obtained at the front and
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rear sensors, but only the rear sensor response is discussed for simplicity.

Figures 6(a), 6(c), and 6(e) show the pressure measured at the rear sensor for open

loop (No Control) and closed loop (Control) cases at the three flow speeds. The closed loop

results show the controller was able to reduce multiple tones at each flow speed, and a slight

reduction in the broadband level was obtained at the two higher flow speeds.

At Mach 0.275, the three most prominent tones in the spectrum, corresponding to the

2nd, 3rd, and 4th Rossiter modes, were reduced by 7.8 dB, 6.9 dB, and 4.1 dB, respectively.

However, the controller excited a new tone above the 4th mode at 1550 Hz. At Mach 0.35 the

2nd and 3rd Rossiter modes were reduced by 7.9 dB and 10.1 dB, respectively. The sidebands

near the 3rd mode at 1160 Hz were increased by the controller. A slight reduction in the

broadband level is apparent between the two tones. The peak in the open loop response at

460 Hz was caused by a difference interaction due to quadratic coupling between the two

Rossiter modes. As the peak levels of those two tones dropped, the peak level of the 460 Hz

tone also dropped. Smaller reductions were obtained at Mach 0.45, where the 2nd Rossiter

mode was reduced by 5.0 dB and the 3rd mode was reduced by 6.5 dB. A slight reduction

in the broadband level is evident between the two tones.

The control and estimator design parameters for these three cases are listed in Table 2.

The first column lists the run number. The number of states for the full state space model

identified from the input-output data are listed next, followed by the order of the reduced

state space model, from which the controller was designed. Columns 5-8 list the properties

of the bandstop filter used to penalize control effort. The stopband and passband levels are

listed in units of dB of transfer function gain, corresponding to the transfer functions shown

in Fig. 5. These units make it easier to compare the effort penalty filter to the transfer

function gain, as in the discussion of Fig. 3(a). The sensor noise variance used to compute

the state estimator, listed in the last column of the table, is also expressed in units of transfer

function gain.

Table 2: Control design parameters

Run # Mach # of states Effort penalty parameters Sensor
# Full Reduced fmin fmax stopband gain passband gain Noise

model model (Hz) (Hz) (dB) (dB) (dB)
1355 0.275 199 80 500 1600 1 51 31
1428 0.35 160 60 400 1700 23 57 43
1535 0.45 195 60 400 2000 31 61 44
1418 0.35 160 60 300 2500 17 57 43

Open and closed loop transfer functions from the actuator input to the rear sensor are
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a) Mach 0.275 (Run 1355): Rear sensor response
with and without control.

b) Mach 0.275 (Run 1355): Open and closed loop
transfer function from actuator to rear sensor.

c) Mach 0.35 (Run 1428): Rear sensor response
with and without control.

d) Mach 0.35 (Run 1428): Open and closed loop
transfer function from actuator to rear sensor.

e) Mach 0.45 (Run 1535): Rear sensor response
with and without control.

f) Mach 0.45 (Run 1535): Open and closed loop
transfer function from actuator to rear sensor.

Figure 6: Measured and modeled control performance at three flow speeds
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shown in Figs. 6(b), 6(d), and 6(f). The solid curve shows the open loop transfer function,

G(z), while the dashed curve shows the closed loop transfer function computed using Eq. 6.

In each case a state space model, such as one of those shown in Fig. 5, was used for the open

loop transfer function. These curves can’t be directly compared with the measured data

since the measured results correspond to a different transfer function driven by an unknown

disturbance. Nonetheless, if trends in the closed loop model match trends in the measured

results, it would validate the state space model and thereby validate the assumption of

linearity. It is also useful to know if the closed loop transfer function can be used to optimize

the control design, without having to close the loop and collect data on every design.

At all three flow speeds the closed loop model shows varying amounts of disturbance

attenuation and amplification in different frequency ranges. Specifically, the model shows

disturbance attenuation whenever the dashed line is less than the solid line. At Mach 0.275,

Figure 6(b) indicates the controller will attenuate the disturbance near the Rossiter modes

at 610, 960, and 1250 Hz, which agrees with the measured results. The closed loop model

also shows disturbance amplification above 610 Hz, below 1200 Hz, and near 1550 Hz. The

measured results verify that with control on, the sensor response increased at these frequen-

cies. The magnitude of disturbance amplification seen in the measured results near 1550 Hz

is curious, since the prediction doesn’t suggest such a large amplification. Assuming a linear

system and a constant disturbance, the tone at 1550 Hz could be due to an error in the state

space model.

Trends in the open and closed loop transfer functions in Figs. 6(d) and 6(f) also agree with

measured results. At Mach 0.35, Fig. 6(d) shows a slight amplification of the disturbance

just above the cavity tone at 700 Hz, and the measured results agree. Amplification is also

predicted and was measured above and below the mode at 1160 Hz. The measured reduction

at 460 Hz was not predicted by the linear model, which is to be expected since this tone was

due to a non-linear effect.

Control spillover and non-linear dynamics

In addition to demonstrating reductions of multiple cavity tones, the preceding results

also show spillover of control energy. For example, Fig. 6(a) shows a peak created by the

control system near 1550 Hz, and Fig. 6(c) shows spillover just above the cavity tone near

1200 Hz. Some of this spillover of energy can be explained by looking at the gain and phase

of the closed loop system, using the expression given in Eq. 6. For example, the magnitudes

of the closed loop transfer functions in Figs. 6(b), 6(d), and 6(f) all show some disturbance

amplification in the sidebands of the cavity tones. This can be attributed to two factors: the

large control gain concentrated in a narrow frequency band about the cavity tones, and the
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a) Measured performance, M=0.35. b) Sensitivity, M=0.35.

Figure 7: Control performance at Mach 0.35 and sensitivity

significant time delay from actuator input to sensor response. Previous works have discussed

this tendency in greater detail, in the context of the cavity tone problem and for controlling

combustion instabilities.10,25,26

Notwithstanding the agreement between the modeled and measured results, there are

non-linearities in the cavity problem which deserve consideration. To illustrate, results from

a second control design at Mach 0.35, labeled Run 1418, are shown in Fig. 7(a) with results

from Run 1428 discussed previously. The Run 1418 controller reduced the two Rossiter

modes without increasing the sidebands, but it generated a secondary tone at 1660 Hz.

Instead of comparing the closed loop transfer functions for these two controllers, it is easier

to compare the magnitude of the sensitivity (Eq. 7), shown in Fig. 7(b). The sensitivity for

Run 1418 shows disturbance amplification at 1650 Hz, which corresponds to the secondary

tone found in the measured results. Disturbance amplification of nearly the same level is also

predicted near 1500 Hz for Run 1418, but the measured results show very little amplification

there. Near the third Rossiter mode at 1160 Hz, the sensitivity for the controllers is similar

to one another, although the magnitude for Run 1418 is slightly higher than Run 1428 at

1200 Hz. This data suggests that Run 1418 should excite the upper sideband of the third

Rossiter mode at least as much as Run 1428, but the measured results show this wasn’t true.

It is not known exactly why the sideband excitation of the two controllers was so different,

but it may have been due to mode competition, where forced and natural frequencies compete

for available energy in the shear layer. This competition between frequencies has been

leveraged before in open and closed loop control configurations,6,9 where the shear layer is

driven with a secondary frequency in order to inhibit the natural feedback loop in the cavity.

This non-linear interaction between frequencies will obviously not be predicted by linear
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models.

Results similar to those shown in Fig. 7 were observed in numerous closed loop control

cases. Specifically, the closed loop performance of many controllers was limited by excitation

of the sidebands of a Rossiter mode. Aggressive controllers which didn’t excite the sidebands

tended to create a secondary tone, like Run 1418. Some possible causes for this behavior

are: inaccuracies in the identified plant model; side effects of high gain controllers and time

delays in the plant; or, changes in the dynamics of the system once control is applied. A

combination of these factors is also possible. Unfortunately, the current set of measurements

is not sufficient to determine the cause for the limitations in controller performance.

Conclusions

Discrete-time linear quadratic control design methods using state space models computed

from experimental data were successfully applied to the cavity tone problem. The controller

consisted of a synthetic jet actuator at the leading edge of the cavity and two pressure

transducers mounted inside the cavity. At Mach 0.275, the 2nd, 3rd, and 4th Rossiter modes

were reduced by 7.8 dB, 6.9 dB, and 4.1 dB. At Mach 0.35, the 2nd and 3rd Rossiter modes

were reduced by 7.9 dB and 10.1 dB, while at Mach 0.45, the 2nd and 3rd modes were

reduced by 5 and 6.5 dB, respectively. With the exception of the 3rd mode at Mach 0.35,

the tonal levels were reduced without exciting sidebands of the tones. At Mach 0.275, the

controller excited an extraneous tone that was 200 Hz above the 4th Rossiter mode. General

trends of disturbance amplification and attenuation found in the measured results agreed

with predictions based on linear models.

Although linear models of the cavity and closed loop system generally agreed with mea-

sured results, the models do have limitations. For example, a linear model was shown to

inadequately account for a strong tone at a high frequency affecting the dynamics at a

lower frequency. Additional measurements are needed to better quantify the dynamics from

actuator to sensor in the cavity.
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